论文标题
基于广义Lambda替代模型的随机模拟器的全球灵敏度分析
Global sensitivity analysis for stochastic simulators based on generalized lambda surrogate models
论文作者
论文摘要
全球灵敏度分析旨在量化输入变异性对计算模型响应变化的影响。它已被广泛应用于确定性模拟器,为此,一组输入参数具有唯一的相应输出值。但是,由于使用(伪)随机数,随机模拟器具有固有的随机性,因此当两次使用相同的输入参数(但非共同的随机数)运行时,它们给出了不同的结果。由于这种随机的性质,常规的索博的指标(用于全球灵敏度分析)可以以不同的方式扩展到随机模拟器。在本文中,我们讨论了三个可能的扩展,并专注于仅取决于输入和输出之间的统计依赖性。此选择忽略了涉及内部随机性的详细数据生成过程,因此可以应用于更广泛的问题。我们建议使用广义Lambda模型模拟随机模拟器的响应分布。可以构建这样的代理,而无需复制。提出的方法适用于三个例子,包括金融和流行病学的两个案例研究。该结果证实了即使存在强杂质性和较小的信噪比,即使存在敏感性指数的方法,该方法的融合也证实了灵敏度指数。
Global sensitivity analysis aims at quantifying the impact of input variability onto the variation of the response of a computational model. It has been widely applied to deterministic simulators, for which a set of input parameters has a unique corresponding output value. Stochastic simulators, however, have intrinsic randomness due to their use of (pseudo)random numbers, so they give different results when run twice with the same input parameters but non-common random numbers. Due to this random nature, conventional Sobol' indices, used in global sensitivity analysis, can be extended to stochastic simulators in different ways. In this paper, we discuss three possible extensions and focus on those that depend only on the statistical dependence between input and output. This choice ignores the detailed data generating process involving the internal randomness, and can thus be applied to a wider class of problems. We propose to use the generalized lambda model to emulate the response distribution of stochastic simulators. Such a surrogate can be constructed without the need for replications. The proposed method is applied to three examples including two case studies in finance and epidemiology. The results confirm the convergence of the approach for estimating the sensitivity indices even with the presence of strong heteroskedasticity and small signal-to-noise ratio.