论文标题
智能反射表面辅助多用户误差通信:渠道估计和波束形成设计
Intelligent Reflecting Surface Assisted Multi-User MISO Communication: Channel Estimation and Beamforming Design
论文作者
论文摘要
最近出现了使用智能反射表面(IRS)重新配置无线传播环境的概念,其中IRS由大量的被动反射元件组成,这些反射元件可以智能地反映构成电磁波以增强性能的电磁波。以前的工作表明,假设基站(BS)和IRS的完美通道状态信息(CSI)的可用性是有希望的,这是由于反射元素的被动性质而不切实际的。本文是研究不完美CSI下的IRS辅助多用户多输入单输出(MISO)通信系统的初步贡献之一。与IRS辅助的通道向量的最小二乘(LS)估计的最小二乘(LS)的少数作品不同,我们利用了BS的大规模褪色统计数据的先验知识来得出贝叶斯的最小平均误差(MMSE)频道在IRS在IRS中应用多个频道估算的协议估算的协议估计值多个频道的估计。在分析和数值上,所得的平方误差(MSE)均低于LS估计值所获得的平均误差(MSE)。提出了在BS处进行预编码和功率分配并在IRS上反映波束形成的联合设计,以最大程度地提高受传输功率约束的最小用户信号与互发率 - 加上噪声比率(SINR)。绩效评估结果说明了拟议系统的效率,并研究了其对通道估计错误的敏感性。
The concept of reconfiguring wireless propagation environments using intelligent reflecting surfaces (IRS)s has recently emerged, where an IRS comprises of a large number of passive reflecting elements that can smartly reflect the impinging electromagnetic waves for performance enhancement. Previous works have shown promising gains assuming the availability of perfect channel state information (CSI) at the base station (BS) and the IRS, which is impractical due to the passive nature of the reflecting elements. This paper makes one of the preliminary contributions of studying an IRS-assisted multi-user multiple-input single-output (MISO) communication system under imperfect CSI. Different from the few recent works that develop least-squares (LS) estimates of the IRS-assisted channel vectors, we exploit the prior knowledge of the large-scale fading statistics at the BS to derive the Bayesian minimum mean squared error (MMSE) channel estimates under a protocol in which the IRS applies a set of optimal phase shifts vectors over multiple channel estimation sub-phases. The resulting mean squared error (MSE) is both analytically and numerically shown to be lower than that achieved by the LS estimates. Joint designs for the precoding and power allocation at the BS and reflect beamforming at the IRS are proposed to maximize the minimum user signal-to-interference-plus-noise ratio (SINR) subject to a transmit power constraint. Performance evaluation results illustrate the efficiency of the proposed system and study its susceptibility to channel estimation errors.