论文标题

通过转移熵图预测多变量时间序列

Multivariate Time Series Forecasting with Transfer Entropy Graph

论文作者

Duan, Ziheng, Xu, Haoyan, Huang, Yida, Feng, Jie, Wang, Yueyang

论文摘要

在许多领域,多元时间序列(MTS)预测是必不可少的问题。准确的预测结果可以有效地帮助决策。迄今为止,已经提出了许多MT的预测方法并广泛应用。但是,这些方法假定单个变量的预测值受所有其他变量的影响,这些变量忽略了变量之间的因果关系。为了解决上述问题,我们提出了一种新颖的端到端深度学习模型,该模型称为图形神经网络,在本文中,具有神经granger因果关系(CAUGNN)。为了表征变量之间的因果信息,我们在模型中介绍了神经granger因果关系图。每个变量都被认为是图节点,每个变量代表变量之间的休闲关系。此外,使用不同感知量表的卷积神经网络(CNN)过滤器用于时间序列特征提取,该滤波器用于生成每个节点的特征。最后,采用图形神经网络(GNN)来解决MTS产生的图形结构的预测问题。现实世界中的三个基准数据集用于评估拟议的Caugnn。综合实验表明,所提出的方法实现了最先进的方法导致MTS预测任务。

Multivariate time series (MTS) forecasting is an essential problem in many fields. Accurate forecasting results can effectively help decision-making. To date, many MTS forecasting methods have been proposed and widely applied. However, these methods assume that the predicted value of a single variable is affected by all other variables, which ignores the causal relationship among variables. To address the above issue, we propose a novel end-to-end deep learning model, termed graph neural network with Neural Granger Causality (CauGNN) in this paper. To characterize the causal information among variables, we introduce the Neural Granger Causality graph in our model. Each variable is regarded as a graph node, and each edge represents the casual relationship between variables. In addition, convolutional neural network (CNN) filters with different perception scales are used for time series feature extraction, which is used to generate the feature of each node. Finally, Graph Neural Network (GNN) is adopted to tackle the forecasting problem of graph structure generated by MTS. Three benchmark datasets from the real world are used to evaluate the proposed CauGNN. The comprehensive experiments show that the proposed method achieves state-of-the-art results in the MTS forecasting task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源