论文标题

外部力量内态的多项式环表示

Polynomial ring representations of endomorphisms of exterior powers

论文作者

Behzad, Ommolbanin, Contiero, Andre, Gatto, Letterio, Martins, Renato Vidal

论文摘要

具有合理系数的多项式环是无限可计数尺寸$ \ mathbb {q} $ vector-vector Space的内态内态谎言代数的不可约表示。我们使用适当的顶点操作员在外部代数上进行了明确的描述,该操作员模仿了lie代数$ gl_ \ infty $的玻色孔顶点表示的人,这是由于日期 - jimbo-jimbo-kashiwara和miwa(djkm)。

A polynomial ring with rational coefficients is an irreducible representation of Lie algebras of endomorphisms of exterior powers of a infinite countable dimensional $\mathbb{Q}$-vector space. We give an explicit description of it, using suitable vertex operators on exterior algebras, which mimick those occurring in the bosonic vertex representation of the Lie algebra $gl_\infty$, due to Date--Jimbo--Kashiwara and Miwa (DJKM).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源