论文标题

有效测试西蒙的一致性

Efficiently Testing Simon's Congruence

论文作者

Gawrychowski, Pawel, Kosche, Maria, Koss, Tore, Manea, Florin, Siemer, Stefan

论文摘要

Simon的一致性$ \ sim_k $定义如下:如果最多$ k $具有相同长度的子序列,则两个单词是$ \ sim_k $ - 等效。我们提出了一种计算算法,给定两个单词$ s $和$ t $,这是$ s \ sim_k t $的最大$ k $。我们的算法在线性时间$ o(| s |+| t |)$中运行时,当输入单词在整数字母上$ \ {1,\ ldots,| s |+| t | \} $(或其他可以在线性时间分类的字母)。在一般字母的情况下,这种方法也会导致最佳算法。我们的结果基于一种新型的组合方法和一系列有效的数据结构。

Simon's congruence $\sim_k$ is defined as follows: two words are $\sim_k$-equivalent if they have the same set of subsequences of length at most $k$. We propose an algorithm which computes, given two words $s$ and $t$, the largest $k$ for which $s\sim_k t$. Our algorithm runs in linear time $O(|s|+|t|)$ when the input words are over the integer alphabet $\{1,\ldots,|s|+|t|\}$ (or other alphabets which can be sorted in linear time). This approach leads to an optimal algorithm in the case of general alphabets as well. Our results are based on a novel combinatorial approach and a series of efficient data structures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源