论文标题
麦克利曲率,用于镁和电磁波的耦合波
Berry curvature for coupled waves of magnons and electromagnetic waves
论文作者
论文摘要
在本文中,我们引入了浆果曲率,拓扑结数和拓扑性手性边缘模式,这些模式从铁磁性绝缘子中的磁化和电磁波之间的杂交中浮出水面。通过专注于节能,我们首先将Landau-Lifshitz-Maxwell方程重新制定为遗传学特征值方程。从特征值方程式,我们定义了镁 - 光子耦合波的浆果曲率。我们表明,因此引入的浆果曲率显示了磁化模式和光子模式之间杂交点周围的突出峰,并且由于磁通量耦合,大量混合模式在非零的Chern数字($ \ pm 1 $)上。根据非零的Chern数,在两个具有相反磁性的铁磁绝缘子之间的域壁上杂交间隙内的拓扑边缘模式出现。
In this paper, we introduce Berry curvature, topological Chern number and topological chiral edge mode, that emerge from a hybridization between magnon and electromagnetic wave in a ferromagnet insulator. By focusing on the energy conservation, we first reformulate the Landau-Lifshitz-Maxwell equation into a Hermitian eigenvalue equation. From the eigenvalue equation, we define the Berry curvature of the magnon-photon coupled waves. We show that the Berry curvature thus introduced shows a prominent peak around a hybridization point between magnon mode and photon mode, and a massive hybrid mode takes a non-zero Chern number ($\pm 1$) due to the magnon-photon coupling. In accordance with the non-zero Chern number, the topological edge modes emerge inside the hybridization gap at a domain wall between two ferromagnetic insulators with opposite magnetizations.