论文标题

工业控制系统中基于学习的集合深度网络攻击检测

An Ensemble Deep Learning-based Cyber-Attack Detection in Industrial Control System

论文作者

Al-Abassi, Abdulrahman, Karimipour, Hadis, Dehghantanha, Ali, Parizi, Reza M.

论文摘要

工业控制系统(ICS)中通信网络和物联网(IoT)的集成增加了它们对网络攻击的脆弱性,从而造成了毁灭性的结果。主要是为了支持信息技术(IT)系统而开发的传统入侵检测系统(IDS),非常算在预定义的模型上,并且主要是在特定的网络攻击上进行的。此外,大多数IDS不考虑ICS数据集的不平衡性质,因此在实际数据集上的准确性低和误报较高。在本文中,我们提出了一个深层表示学习模型,以构建不平衡数据集的新平衡表示。新表示形式被馈入专门为ICS环境设计的集成深度学习攻击检测模型。拟议的攻击检测模型利用深神经网络(DNN)和决策树(DT)分类器来检测新表示形式的网络攻击。根据两个真实ICS数据集的10倍交叉验证,评估了所提出的模型的性能。结果表明,所提出的方法的表现优于传统分类器,包括随机森林(RF),DNN和ADABOOST,以及文献中最新的现有模型。提出的方法是一种广义技术,可以在具有最小变化的现有ICS基础架构中实施。

The integration of communication networks and the Internet of Things (IoT) in Industrial Control Systems (ICSs) increases their vulnerability towards cyber-attacks, causing devastating outcomes. Traditional Intrusion Detection Systems (IDSs), which are mainly developed to support Information Technology (IT) systems, count vastly on predefined models and are trained mostly on specific cyber-attacks. Besides, most IDSs do not consider the imbalanced nature of ICS datasets, thereby suffering from low accuracy and high false positive on real datasets. In this paper, we propose a deep representation learning model to construct new balanced representations of the imbalanced dataset. The new representations are fed into an ensemble deep learning attack detection model specifically designed for an ICS environment. The proposed attack detection model leverages Deep Neural Network (DNN) and Decision Tree (DT) classifiers to detect cyber-attacks from the new representations. The performance of the proposed model is evaluated based on 10-fold cross-validation on two real ICS datasets. The results show that the proposed method outperforms conventional classifiers, including Random Forest (RF), DNN, and AdaBoost, as well as recent existing models in the literature. The proposed approach is a generalized technique, which can be implemented in existing ICS infrastructures with minimum changes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源