论文标题

使用MMWave Urban Communications中的机器学习技术预测无线通道模型的路径丢失

Predicting the Path Loss of Wireless Channel Models Using Machine Learning Techniques in MmWave Urban Communications

论文作者

Aldossari, Saud, Chen, Kwang-Cheng

论文摘要

经典的无线通信通道建模是使用确定性和随机通道方法进行的。机器学习(ML)彻底改变了5G及以后的系统设计。 ML技术(例如监督倾斜方法)将用于预测某个数据集中的环境变量的无线通道路径丢失。通信系统基本原理的传播信号集中在通道建模上,尤其是针对MMWave等新的频段。由于有部分相关的通道测量数据和模型的可用性,机器学习可以促进5G和无线通信系统的快速通道建模。当无线通道的不规则性导致一种复杂的方法来实现准确的模型时,适当的机器学习方法探讨了以降低复杂性并提高准确性。在本文中,我们展示了除传统通道建模以外的替代程序,以增强使用机器学习技术的路径损失模型,以减轻采取测量结果的通道复杂性和耗时的过程。这证明了回归使用某种情况的测量数据,以成功地帮助预测不同操作环境的路径损失模型。

The classic wireless communication channel modeling is performed using Deterministic and Stochastic channel methodologies. Machine learning (ML) emerges to revolutionize system design for 5G and beyond. ML techniques such as supervise leaning methods will be used to predict the wireless channel path loss of a variate of environments base on a certain dataset. The propagation signal of communication systems fundamentals is focusing on channel modeling particularly for new frequency bands such as MmWave. Machine learning can facilitate rapid channel modeling for 5G and beyond wireless communication systems due to the availability of partially relevant channel measurement data and model. When irregularity of the wireless channels lead to a complex methodology to achieve accurate models, appropriate machine learning methodology explores to reduce the complexity and increase the accuracy. In this paper, we demonstrate alternative procedures beyond traditional channel modeling to enhance the path loss models using machine learning techniques, to alleviate the dilemma of channel complexity and time-consuming process that the measurements were taken. This demonstrated regression uses the measurement data of a certain scenario to successfully assist the prediction of path loss model of a different operating environment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源