论文标题
跨流几何形状的颗粒状流变学的幂律缩放
Power-law scaling in granular rheology across flow geometries
论文作者
论文摘要
基于离散元素方法模拟,我们提出了一种独立于包装分数的颗粒流的新形式。通过无量纲温度$θ$将应力比$μ$重新缩放,这使得数据从一组流量几何崩溃到主曲线的数据仅取决于惯性数量$ i $。在2D和3D系统中,基本的幂律结构对于不同的粒子特性(例如表面摩擦)似乎很强。我们展示了这种流变学如何拟合和扩展诸如动力学理论和非局部颗粒流动模型之类的框架。
Based on discrete element method simulations, we propose a new form of the constitution equation for granular flows independent of packing fraction. Rescaling the stress ratio $μ$ by a power of dimensionless temperature $Θ$ makes the data from a wide set of flow geometries collapse to a master curve depending only on the inertial number $I$. The basic power-law structure appears robust to varying particle properties (e.g. surface friction) in both 2D and 3D systems. We show how this rheology fits and extends frameworks such as kinetic theory and the Nonlocal Granular Fluidity model.