论文标题

量子目标检测中的多元歧视

Multivariate Discrimination in Quantum Target Detection

论文作者

Svihra, Peter, Zhang, Yingwen, Hockett, Paul, Ferrante, Steven, Sussman, Benjamin, England, Duncan, Nomerotski, Andrei

论文摘要

我们描述了一种可能性比率的简单多元技术,以改善对多维量子目标检测中信号和背景的区分。该技术结合了从自发参数下转换源的光子对的两个自变量,时间差和求和能,成为最佳判别。与以前的技术相比,在实验数据和蒙特卡洛建模中研究了判别性能。随着新型探测器的可用,我们期望这种多元分析在多维量子光学器件中变得越来越重要。

We describe a simple multivariate technique of likelihood ratios for improved discrimination of signal and background in multi-dimensional quantum target detection. The technique combines two independent variables, time difference and summed energy, of a photon pair from the spontaneous parametric down-conversion source into an optimal discriminant. The discriminant performance was studied in experimental data and in Monte-Carlo modelling with clear improvement shown compared to previous techniques. As novel detectors become available, we expect this type of multivariate analysis to become increasingly important in multi-dimensional quantum optics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源