论文标题
螺旋对称空间中的多极颗粒
Multipolar Particles in Helically Symmetric Spacetimes
论文作者
论文摘要
我们考虑了一个具有内部结构的旋转紧凑物体的二进制系统,沿着精确的圆形轨道移动,并在多极重力骨架形式主义中建模,直至四极顺序。我们证明,每个多极粒子的世界线都是螺旋杀死矢量场的整体曲线,并且沿着这些世界线沿着每个粒子的4个速度,4个弹药,旋转张量和四极张量。本文开发的几何框架为紧凑型二进制力学的第一定律铺平了道路,直至四极阶。
We consider a binary system of spinning compact objects with internal structure, moving along an exactly circular orbit, and modelled within the multipolar gravitational skeleton formalism, up to quadrupolar order. We prove that the worldline of each multipolar particle is an integral curve of the helical Killing vector field, and that the 4-velocity, 4-momentum, spin tensor and quadrupole tensor of each particle are Lie-dragged along those worldlines. The geometrical framework developed in this paper paves the way to an extension of the first law of compact-object binary mechanics up to quadrupolar order.