论文标题
紧凑的恒星与异国物质
Compact stars with exotic matter
论文作者
论文摘要
在本文中,我们采用了托尔曼vii解决方案,具有异国情调的物质,这些解决方案可能存在于紧凑型物体的极度密集核心中。 Tolman VII解决方案是具有完美流体源的球形对称,静态爱因斯坦场方程的精确分析解,具有许多特征,使其有趣地建模高密度恒星天文学物体。出于我们的目的,我们使用了广义的非线性状态方程,该方程可能包括外来物质以及灰尘,辐射和暗能量。状态方程(EOS)的线性贡献包括夸克/辐射问题,非线性贡献包括黑暗能量/外来问题。可以通过参数$ n $修改外来物质的量,该参数可以与绝热指数链接。随着$ n $的增加,异国情调的贡献增加了EOS。检查了模型的物理特性,例如压力,密度,质量功能,表面红移,重力红移,并详细讨论了恒星构型的稳定性。该模型具有满足所有能源条件的特征,并且没有中央奇异性。 $ M-R $关系是通过分析构建的,最大质量及其相应的半径是使用精确溶液确定的,并显示出满足各种观察性恒星紧凑型恒星。
In this paper we employ Tolman VII solution with exotic matter that may be present in the extremely dense core of compact objects. The Tolman VII solution, an exact analytic solution to the spherically symmetric, static Einstein field equations with a perfect fluid source, has many characteristics that make it interesting for modeling high density stellar astronomical objects. For our purpose we use generalized non-linear equation of state which may incorporate exotic matter along with dust, radiation and dark energy. The equation of state (EoS) has a linear contribution comprising quark/radiation matters and a nonlinear contribution comprising dark energy/exotic matters. The amount of exotic matter contain can be modify by a parameter $n$ which can be linked to adiabatic index. As $n$ increases the exotic contribution increases which stiffens the EoS. The physical properties of the model such as pressure, density, mass function, surface redshift, gravitational redshift are examined and the stability of the stellar configuration is discussed in details. The model has promising features as it satisfies all energy conditions and is free from central singularities. The $M-R$ relation is constructed analytically and the maximum mass and its corresponding radius is determined using the exact solutions and is shown to satisfy various observational stellar compact stars.