论文标题

通过通勤子集进行分区的组

Groups that have a Partition by Commuting Subsets

论文作者

Foguel, Tuval, Hiller, Josh, Lewis, Mark L., Moghaddamfar, A. R.

论文摘要

令$ g $为非亚伯人群。我们说$ g $具有Abelian分区,如果存在$ g $的分区,以通勤子集$ a_1,a_2,\ ldots,a_n $ of $ g $,以便每个$ | a_i | \ geqslant 2 $ for $ i = 1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,\ ldots,n $。本文调查了与Abelian分区的小组有关的问题。除其他结果外,我们还表明,每个有限组都是具有Abelian分区的组的子组的同构,并且也与没有Abelian分区的组的亚组同构。我们还为几个群体家庭的分区数量最小数量的界限 - 在某些情况下进行了确切的计算。最后,我们研究了与直接产品相对于直接产品的最小零件数量的分区大小。

Let $G$ be a nonabelian group. We say that $G$ has an abelian partition, if there exists a partition of $G$ into commuting subsets $A_1, A_2, \ldots, A_n$ of $G$, such that $|A_i|\geqslant 2$ for each $i=1, 2, \ldots, n$. This paper investigates problems relating to group with abelian partitions. Among other results, we show that every finite group is isomorphic to a subgroup of a group with an abelian partition and also isomorphic to a subgroup of a group with no abelian partition. We also find bounds for the minimum number of partitions for several families of groups which admit abelian partitions -- with exact calculations in some cases. Finally, we examine how the size of partitions with the minimum number of parts behaves with respect to the direct product.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源