论文标题

GCN-RL电路设计师:具有图形神经网络和增强学习的可转移晶体管大小

GCN-RL Circuit Designer: Transferable Transistor Sizing with Graph Neural Networks and Reinforcement Learning

论文作者

Wang, Hanrui, Wang, Kuan, Yang, Jiacheng, Shen, Linxiao, Sun, Nan, Lee, Hae-Seung, Han, Song

论文摘要

自动晶体管尺寸是由于较大的设计空间,复杂的性能权衡和快速的技术进步,在电路设计中是一个具有挑战性的问题。尽管在一个电路上进行了晶体管尺寸的目标,但在将知识从一个电路转移到另一个电路以减少重新设计开销方面已经进行了有限的研究。在本文中,我们提出了GCN-RL电路设计师,利用增强学习(RL)来转移不同技术节点和拓扑之间的知识。此外,受电路是图形的简单事实的启发,我们通过图形卷积神经网络(GCN)学习了电路拓扑表示。 GCN-RL代理提取拓扑图的特征,其顶点是晶体管,边缘为电线。与传统的黑盒优化方法(贝叶斯优化,进化算法),随机搜索和人类专家设计相比,我们基于学习的优化始终在四个不同的电路上获得了最高功绩(FOM)。关于五个技术节点和两个电路拓扑之间传输学习的实验表明,通过传递学习的RL比没有知识转移的方法更高的FOM可以获得更高的FOM。我们可转移的优化方法使晶体管尺寸和设计移植更加有效。

Automatic transistor sizing is a challenging problem in circuit design due to the large design space, complex performance trade-offs, and fast technological advancements. Although there has been plenty of work on transistor sizing targeting on one circuit, limited research has been done on transferring the knowledge from one circuit to another to reduce the re-design overhead. In this paper, we present GCN-RL Circuit Designer, leveraging reinforcement learning (RL) to transfer the knowledge between different technology nodes and topologies. Moreover, inspired by the simple fact that circuit is a graph, we learn on the circuit topology representation with graph convolutional neural networks (GCN). The GCN-RL agent extracts features of the topology graph whose vertices are transistors, edges are wires. Our learning-based optimization consistently achieves the highest Figures of Merit (FoM) on four different circuits compared with conventional black-box optimization methods (Bayesian Optimization, Evolutionary Algorithms), random search, and human expert designs. Experiments on transfer learning between five technology nodes and two circuit topologies demonstrate that RL with transfer learning can achieve much higher FoMs than methods without knowledge transfer. Our transferable optimization method makes transistor sizing and design porting more effective and efficient.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源