论文标题
泰勒创新过程中的法律
Taylor's law in innovation processes
论文作者
论文摘要
泰勒的定律量化了开放系统中发生的创新数量波动的缩放特性。 基于URN的建模方案已经被证明可以有效地建模这种复杂的行为。 在这里,我们通过利用其三角形urn模型来利用它们的表示,对泰勒定律指数中的分析估计。 我们还强调了这些模型与泊松 - 迪里奇过程的对应关系,并演示了非平凡的泰勒定律指数如何在与人类活动相关的系统中是一种通用特征。 我们基于对人类活动产生的四个数据集合的分析:(i)书面语言(来自古腾堡语料库); (ii)一个在线音乐网站(last.fm); (iii)Twitter主题标签; (iv)在线协作标记系统(del.icio.us)。 虽然泰勒的定律在最后两个数据集中观察到与普通模型的预测一致,但我们需要引入概括以充分表征前两个数据集的行为,而时间相关性可能更相关。 我们建议泰勒定律是对ZIPF的基本补充,并在揭示了以创新为基础的系统演变基础的复杂动力学过程中堆放法律。
Taylor's law quantifies the scaling properties of the fluctuations of the number of innovations occurring in open systems. Urn based modelling schemes have already proven to be effective in modelling this complex behaviour. Here, we present analytical estimations of Taylor's law exponents in such models, by leveraging on their representation in terms of triangular urn models. We also highlight the correspondence of these models with Poisson-Dirichlet processes and demonstrate how a non-trivial Taylor's law exponent is a kind of universal feature in systems related to human activities. We base this result on the analysis of four collections of data generated by human activity: (i) written language (from a Gutenberg corpus); (ii) a n online music website (Last.fm); (iii) Twitter hashtags; (iv) a on-line collaborative tagging system (Del.icio.us). While Taylor's law observed in the last two datasets agrees with the plain model predictions, we need to introduce a generalization to fully characterize the behaviour of the first two datasets, where temporal correlations are possibly more relevant. We suggest that Taylor's law is a fundamental complement to Zipf's and Heaps' laws in unveiling the complex dynamical processes underlying the evolution of systems featuring innovation.