论文标题
分析预测的旋转对称的显式相关的高斯函数与单轴移位中心
Analytically projected rotationally symmetric explicitly correlated Gaussian Functions with one-axis-shifted centers
论文作者
论文摘要
提出了一种新的明确相关的功能形式,用于扩展具有任意角动量和奇偶校验的N颗粒系统的波函数。我们开发了基于投影的方法,该方法在我们以前的工作中被数值开发[J.化学物理。 149,184105(2018)],通过分析求解整体投影算子,将高斯与单轴移动的中心显式相关,并得出了哈密顿和角动量操作员的矩阵元素。对于三个和四粒子系统的几个旋转态,提出了几种差异计算,而无需假设Born-Oppenheimer近似。我们展示了如何将新的形式主义用作小原子和分子性质高恰次计算的统一框架。
A new explicitly correlated functional form for expanding the wave function of an N-particle system with arbitrary angular momentum and parity is presented. We develop the projection-based approach, numerically exploited in our previous work [J. Chem. Phys. 149, 184105 (2018)], to explicitly correlated Gausssians with one-axis shifted centers and derive the matrix elements for the Hamiltonian and the angular momentum operators by analytically solving the integral projection operator. Variational few-body calculations without assuming the Born-Oppenheimer approximation are presented for several rotationally excited states of three- and four-particle systems. We show how the new formalism can be used as a unified framework for high-accuracy calculations of properties of small atoms and molecules.