论文标题

重新审查无监督的关系提取

Revisiting Unsupervised Relation Extraction

论文作者

Tran, Thy Thy, Le, Phong, Ananiadou, Sophia

论文摘要

无监督的关系提取(URE)从原始文本中提取命名实体之间的关系,而无需手动标记的数据和现有知识库(KBS)。可以将URE方法分类为生成和判别方法,这些方法依赖于手工制作的特征或表面形式。但是,我们证明,通过仅使用指定的实体诱导关系类型,我们可以在两个流行的数据集上胜过现有的方法。我们与其他URE技术对我们的发现进行比较和评估,以确定URE中的重要特征。我们得出的结论是,实体类型为URE提供了强烈的感应偏见。

Unsupervised relation extraction (URE) extracts relations between named entities from raw text without manually-labelled data and existing knowledge bases (KBs). URE methods can be categorised into generative and discriminative approaches, which rely either on hand-crafted features or surface form. However, we demonstrate that by using only named entities to induce relation types, we can outperform existing methods on two popular datasets. We conduct a comparison and evaluation of our findings with other URE techniques, to ascertain the important features in URE. We conclude that entity types provide a strong inductive bias for URE.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源