论文标题
攻击斜压力流体动力学的汉密尔顿配方
Exploration of Hamiltonian formulations of baroclinic hydrodynamics
论文作者
论文摘要
预计在灵感阶段的压缩流中,预计紧凑型二进制中的中子恒星有望得到充分的影响。在合并阶段发生潮汐破坏和冲击加热的情况下,需要进行斜压描述。在正压病例中,汉密尔顿配方可能为灵感阶段的数值相对性模拟提供了独特的好处,包括高度准确的循环和流体变量的超级融合,并正在积极探索。在这项工作中,我们研究了在斜压病中哈密顿配方的生存能力。与预压情况相反,该公式是非保守的,但是可以通过近似的Riemann求解器算法对其进行良好的处理,因为非保守术语在真正的非线性领域中消失了。尽管如此,使用数值的一维冲击管测试,我们发现汉密尔顿系统的弱解与在不连续性跨性别的静止质量密度,动量密度和能量密度的保护下,获得的标准较弱的解决方案不同。我们还表明,正压汉密尔顿配方可以接收流体 - 空中界面的冲击波,这可能与过去数值测试中观察到的恒星表面的不稳定行为有关。鉴于非物理较弱的解决方案,我们预计,在数值相对论中的哈密顿水平动力学表述的未来实施中,有必要在灵感阶段使用明确的正压配方,然后在合并之前切换到强大的Baroclinic配方。
A neutron star in a compact binary is expected to be well-approximated by a barotropic flow during the inspiral phase. During the merger phase, where tidal disruption and shock-heating occur, a baroclinic description is needed instead. In the barotropic case, a Hamiltonian formulation potentially offers unique benefits for numerical relativity simulations of the inspiral phase, including highly accurate conservation of circulation and superconvergence of the fluid variables, and is actively being explored. In this work, we investigate the viability of a Hamiltonian formulation in the baroclinic case. At odds with the barotropic case, this formulation is non-conservative, yet it can be treated well with approximate Riemann solver algorithms since the non-conservative terms vanish across genuinely nonlinear fields. Nonetheless, using numerical 1-dimensional shock tube tests we find that the weak solutions of the Hamiltonian system differ from the standard ones obtained by enforcing conservation of rest mass density, momentum density, and energy density across discontinuities. We also show that barotropic Hamiltonian formulations can admit shockwaves at fluid-vacuum interfaces, which may be related to the unstable behavior of stellar surfaces observed in past numerical tests. In light of the unphysical weak solutions, we expect that in future implementations of the Hamiltonian formulation of hydrodynamics in numerical relativity it will be necessary to use an explicitly barotropic formulation during the inspiral phase, and then switch to a robust baroclinic formulation prior to merger.