论文标题
多固定点数值保形性自举:一个结构化全局对称性的案例研究
Multi-fixed point numerical conformal bootstrap: a case study with structured global symmetry
论文作者
论文摘要
在很大程度上,现代数值保形引导程序的未来效用取决于其准确预测迄今未知的非平整保形场理论(CFTS)的能力。在这里,我们研究了在全球对称组具有产品结构的情况下,这可能在多大程度上。我们通过使用最小的输入假设集的混合相关引导计算来测试固定点的签名来做到这一点。这种“半盲”方法与探测更复杂的组的其他方法形成鲜明对比,这些方法具有其他光谱假设的“目标”已知理论,或者使用单个相关bootstrap结合的饱和度作为起点。作为一个案例研究,我们在$ d = 3 $ dimensions中选择了使用产品组对称$ O(15)\ otimes {o}(3)$的CFT的空间。假设该理论中只有一个相关的标量($ \ ell = 0 $)单元操作员,我们在所选的缩放尺寸空间中找到了一个“允许”区域。比例尺对应于两个已知的大$ n $关键理论,即海森伯格和手性理论,它们位于该地区的边界上或附近。大$ n $抗病毒点很好地位于“允许”区域之外,这与抗病毒理论不稳定的期望是一致的,因此具有附加相关的标量单线操作员。我们还在“允许”区域的边界上发现了一个尺寸尺寸的边界的尖锐扭结,这些缩放维度的值与$(n,m)=(15,3)$实例的任何大 - $ n $ o(n)的$ O(n)\ otimes o(m)o(m)$ trigital理论。
In large part, the future utility of modern numerical conformal bootstrap depends on its ability to accurately predict the existence of hitherto unknown non-trivial conformal field theories (CFTs). Here we investigate the extent to which this is possible in the case where the global symmetry group has a product structure. We do this by testing for signatures of fixed points using a mixed-correlator bootstrap calculation with a minimal set of input assumptions. This 'semi-blind' approach contrasts with other approaches for probing more complicated groups, which 'target' known theories with additional spectral assumptions or use the saturation of the single-correlator bootstrap bound as a starting point. As a case study, we select the space of CFTs with product-group symmetry $O(15)\otimes{O}(3)$ in $d=3$ dimensions. On the assumption that there is only one relevant scalar ($\ell=0$) singlet operator in the theory, we find a single 'allowed' region in our chosen space of scaling dimensions. The scaling dimensions corresponding to two known large-$N$ critical theories, the Heisenberg and the chiral ones, lie on or very near the boundary of this region. The large-$N$ antichiral point lies well outside the 'allowed' region, which is consistent with the expectation that the antichiral theory is unstable, and thus has an additional relevant scalar singlet operator. We also find a sharp kink in the boundary of the 'allowed' region at values of the scaling dimensions that do not correspond to the $(N,M)=(15,3)$ instance of any large-$N$-predicted $O(N) \otimes O(M)$ critical theory.