论文标题
非线性最小二乘问题的自适应强大内核
Adaptive Robust Kernels for Non-Linear Least Squares Problems
论文作者
论文摘要
状态估计是大多数机器人系统中的关键要素。通常,使用某些最小二乘最小化的形式进行状态估计。基本上,在实际数据上使用的所有错误最小化过程都使用强大的内核作为处理数据中异常值的标准方法。但是,这些内核通常是手工挑选的,有时是不同的组合,并且需要手动调整其参数以解决特定问题。在本文中,我们提出了使用广义稳健核心家族的使用,该家族会根据残差的分布自动调整,并包括常见的M估计剂。我们在机器人技术中使用了两个流行的估计问题,即ICP和捆绑套件调整,测试了我们的自适应核。本文提出的实验表明,我们的方法提供了更高的鲁棒性,同时避免对内核参数进行手动调整。
State estimation is a key ingredient in most robotic systems. Often, state estimation is performed using some form of least squares minimization. Basically, all error minimization procedures that work on real-world data use robust kernels as the standard way for dealing with outliers in the data. These kernels, however, are often hand-picked, sometimes in different combinations, and their parameters need to be tuned manually for a particular problem. In this paper, we propose the use of a generalized robust kernel family, which is automatically tuned based on the distribution of the residuals and includes the common m-estimators. We tested our adaptive kernel with two popular estimation problems in robotics, namely ICP and bundle adjustment. The experiments presented in this paper suggest that our approach provides higher robustness while avoiding a manual tuning of the kernel parameters.