论文标题

在一个和更高的维度中反射的布朗尼运动

Reflected fractional Brownian motion in one and higher dimensions

论文作者

Vojta, Thomas, Halladay, Samuel, Skinner, Sarah, Janušonis, Skirmantas, Guggenberger, Tobias, Metzler, Ralf

论文摘要

分数布朗运动(FBM)是一种具有长期相关性的非马克维亚自相似的高斯随机过程,代表了一种广泛应用的,范式的数学模型的异常扩散模型。我们报告了在一个,两个,两个和三个维度的FBM大规模计算机模拟的结果,在存在反射边界的情况下,将运动限制在空间中有限区域的边界。概括了有限和半耗时一维间隔的早期结果,我们观察到,FBM的长时间相关性与反射边界之间的相互作用导致平稳概率密度与正常扩散的均匀密度的显着偏差。颗粒在超级散发性FBM的边界处积聚,而其密度则在边界处耗尽以进行亚扩散。具体而言,概率密度$ p $开发了一个幂律奇异性,即$ p \ sim r^κ$,是距墙壁$ r $的函数。我们确定指数$κ$作为维度,限制几何形状和FBM的异常扩散指数$α$的函数。我们还讨论了我们的结果的含义,包括应用脊椎动物大脑中血清素能纤维密度模式的应用。

Fractional Brownian motion (FBM), a non-Markovian self-similar Gaussian stochastic process with long-ranged correlations, represents a widely applied, paradigmatic mathematical model of anomalous diffusion. We report the results of large-scale computer simulations of FBM in one, two, and three dimensions in the presence of reflecting boundaries that confine the motion to finite regions in space. Generalizing earlier results for finite and semi-infinite one-dimensional intervals, we observe that the interplay between the long-time correlations of FBM and the reflecting boundaries leads to striking deviations of the stationary probability density from the uniform density found for normal diffusion. Particles accumulate at the boundaries for superdiffusive FBM while their density is depleted at the boundaries for subdiffusion. Specifically, the probability density $P$ develops a power-law singularity, $P\sim r^κ$, as function of the distance $r$ from the wall. We determine the exponent $κ$ as function of the dimensionality, the confining geometry, and the anomalous diffusion exponent $α$ of the FBM. We also discuss implications of our results, including an application to modeling serotonergic fiber density patterns in vertebrate brains.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源