论文标题

千古量子过程的理论

Theory of Ergodic Quantum Processes

论文作者

Movassagh, Ramis, Schenker, Jeffrey

论文摘要

量子系统的通用行为长期以来一直具有理论性和实际利益。任何量子过程均由一系列量子通道表示。我们考虑具有任意相关性和不可忽略的脱碳性的随机通道的一般ergodic序列。成真性包括并大大概括了随机独立性。我们获得了一个定理,该定理表明,这样的通道序列的组成将指数级收敛到替换(rank-One)通道。使用该定理,我们得出了翻译不变通道和随机独立的随机通道的限制行为。然后,我们使用形式主义来描述沿形基质产物状态的热力学极限。我们得出了可观察到的局部观察值的期望值的公式,并证明了局部观测值衰减的两点相关性。然后,我们通过分析地计算任何切割的纠缠谱,可以准确地计算两分部分纠缠熵(即Rényi或von Neumann)。我们结果的其他物理含义是,大多数物质的浮雕阶段都是可稳定的,并且就其量子纠缠而言,较大深度极限的嘈杂随机电路将是微不足道的。为了获得这些结果,我们将量子信息理论桥接到动力学系统和随机矩阵理论。

The generic behavior of quantum systems has long been of theoretical and practical interest. Any quantum process is represented by a sequence of quantum channels. We consider general ergodic sequences of stochastic channels with arbitrary correlations and non-negligible decoherence. Ergodicity includes and vastly generalizes random independence. We obtain a theorem which shows that the composition of such a sequence of channels converges exponentially fast to a replacement (rank-one) channel. Using this theorem, we derive the limiting behavior of translation-invariant channels and stochastically independent random channels. We then use our formalism to describe the thermodynamic limit of ergodic matrix product states. We derive formulas for the expectation value of a local observable and prove that the two-point correlations of local observables decay exponentially. We then analytically compute the entanglement spectrum across any cut, by which the bipartite entanglement entropy (i.e., Rényi or von Neumann) across an arbitrary cut can be computed exactly. Other physical implications of our results are that most Floquet phases of matter are metastable and that noisy random circuits in the large depth limit will be trivial as far as their quantum entanglement is concerned. To obtain these results, we bridge quantum information theory to dynamical systems and random matrix theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源