论文标题

迷宫步行:优雅的混沌保守非汉顿系统

Labyrinth walks: An elegant chaotic conservative non-Hamiltonian system

论文作者

Latifi, Anouchah, Basios, Vasileios, Antonopoulos, Chris G.

论文摘要

在本文中,我们表明“迷宫行走”是“迷宫混乱”的保守版本,也不承认托马斯·雷斯勒系统类别的成员,并未承认自主哈密顿族人在时间上持续不断的功能,因此,不承认同类结构。但是,它是保守的,因此承认了载体的潜力,同时是混乱的。这套特殊的特性使“迷宫行走”成为混乱,保守,非汉顿系统的优雅例子,其相位空间中只有不稳定的固定点,以3维网格排列。结果,即使是确定性的系统,“迷宫行走”,它也会让人联想到随机系统中布朗运动的分数!

In this paper, we show that "Labyrinth walks", the conservative version of "Labyrinth chaos" and member of the Thomas-Rössler class of systems, does not admit an autonomous Hamiltonian as a constant function in time, and as a consequence, does not admit a symplectic structure. However, it is conservative, and thus admits a vector potential, being at the same time chaotic. This exceptional set of properties makes "Labyrinth walks" an elegant example of a chaotic, conservative, non-Hamiltonian system, with only unstable stationary points in its phase space, arranged in a 3-dimensional grid. As a consequence, "Labyrinth walks", even though is a deterministic system, it exhibits motion reminiscent of fractional Brownian motion in stochastic systems!

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源