论文标题
扭曲的差异操作员和$ Q $ -Crystals
Twisted differential operators and $q$-crystals
论文作者
论文摘要
我们讨论了Bhatt和Scholze在他们最近的Q-Crystalline协同学理论中考虑的Q-PD-Envelope的概念,并解释了我们与我们对多项式扭曲代数的概念的关系。加上对Q-晶体位点上晶体的解释,我们将其称为Q-Crystals,因为模块具有某种分层,它使我们能够将扭曲的微分运算符环上的模块与任何Q-Crystal相关联。为简单起见,我们在这里仅解释了一维情况。
We discuss the notion of a q-PD-envelope considered by Bhatt and Scholze in their recent theory of q-crystalline cohomology and explain the relation with our notion of a divided polynomial twisted algebra. Together with an interpretation of crystals on the q-crystalline site, that we call q-crystals, as modules endowed with some kind of stratification, it allows us to associate a module on the ring of twisted differential operators to any q-crystal. For simplicity, we explain here only the one dimensional case.