论文标题

关于6G的宽带连通性的白皮书

White Paper on Broadband Connectivity in 6G

论文作者

Rajatheva, Nandana, Atzeni, Italo, Bjornson, Emil, Bourdoux, Andre, Buzzi, Stefano, Dore, Jean-Baptiste, Erkucuk, Serhat, Fuentes, Manuel, Guan, Ke, Hu, Yuzhou, Huang, Xiaojing, Hulkkonen, Jari, Jornet, Josep Miquel, Katz, Marcos, Nilsson, Rickard, Panayirci, Erdal, Rabie, Khaled, Rajapaksha, Nuwanthika, Salehi, MohammadJavad, Sarieddeen, Hadi, Svensson, Tommy, Tervo, Oskari, Tolli, Antti, Wu, Qingqing, Xu, Wen

论文摘要

这份白皮书探讨了未来6G无线系统中实现宽带连接的道路。考虑到不同类别的用例,从具有峰值数据速率的极端容量到最高1 TBP的极限,到通过刻板级的典型数据速率提高典型的数据速率,以支持在铁路上以高达1000 km/h的速度宽带连接。为了实现这些目标,不仅将进化地面网络,而且还将与卫星网络集成,所有卫星网络都促进了自主系统和各种相互联系的结构。我们认为,在基础架构,频谱和协议/算法级别上,需要几种类别的推动因素才能实现6G中预期的宽带连接目标。在基础架构级别,我们考虑使用超质量的MIMO技术(可能是使用全息广播实施),智能反射表面,以用户为中心且无细胞的网络网络,集成访问和回程,以及集成的空间和地面网络。在频谱级别,网络必须无缝利用亚第6 GHz频段进行许多设备的覆盖范围和空间多路复用,而较高的频段将用于推动点对点链接的峰值速率。后一条路径将导致THZ通信在特定情况下得到可见光通信的补充。在协议/算法级别上,促成器包括改进的编码,调制和波形,以达到较低的潜伏期,更高的可靠性和降低的复杂性。将需要不同的选项来最佳支持不同的用例。可以通过使用各种完整的无线电,基于速率分解,基于机器学习的优化,编码的缓存和广播的组合来进一步提高资源效率。

This white paper explores the road to implementing broadband connectivity in future 6G wireless systems. Different categories of use cases are considered, from extreme capacity with peak data rates up to 1 Tbps, to raising the typical data rates by orders-of-magnitude, to support broadband connectivity at railway speeds up to 1000 km/h. To achieve these goals, not only the terrestrial networks will be evolved but they will also be integrated with satellite networks, all facilitating autonomous systems and various interconnected structures. We believe that several categories of enablers at the infrastructure, spectrum, and protocol/ algorithmic levels are required to realize the intended broadband connectivity goals in 6G. At the infrastructure level, we consider ultra-massive MIMO technology (possibly implemented using holographic radio), intelligent reflecting surfaces, user-centric and scalable cell-free networking, integrated access and backhaul, and integrated space and terrestrial networks. At the spectrum level, the network must seamlessly utilize sub-6 GHz bands for coverage and spatial multiplexing of many devices, while higher bands will be used for pushing the peak rates of point-to-point links. The latter path will lead to THz communications complemented by visible light communications in specific scenarios. At the protocol/algorithmic level, the enablers include improved coding, modulation, and waveforms to achieve lower latencies, higher reliability, and reduced complexity. Different options will be needed to optimally support different use cases. The resource efficiency can be further improved by using various combinations of full-duplex radios, interference management based on rate-splitting, machine-learning-based optimization, coded caching, and broadcasting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源