论文标题
三维欧几里得空间中加权施罐最小树的扭曲角度
The twist angle of weighted Steiner minimal trees in the three dimensional Euclidean Space
论文作者
论文摘要
我们找到了使我们能够计算两个内部节点(加权fermat-torricelli点)的位置的方程式。对于加权的施罐问题,在R^3中确定四面体的四个点。此外,通过应用解决方案W.R.对于边界四面体的加权施罐问题,我们计算了由一个边缘形成的两个加权施泰纳平面与由两个加权的fermat-torricelli点所定义的线和非额外的边缘和由两个加权Fermat-Fermat-Fermat-Fermat-Torricelli点所定义的线之间的界线。
We find the equations that allow us to compute the position of the two interior nodes (weighted Fermat-Torricelli points) w.r. to the weighted Steiner problem for four points determining a tetrahedron in R^3. Furthermore, by applying the solution w.r. to the weighted Steiner problem for a boundary tetrahedron, we calculate the twist angle between the two weighted Steiner planes formed by one edge and the line defined by the two weighted Fermat- Torricelli points and a non-neighbouring edge and the line defined by the two weighted Fermat-Torricelli points.