论文标题

INF-NET:从CT图像中自动Covid-19肺部感染分割

Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images

论文作者

Fan, Deng-Ping, Zhou, Tao, Ji, Ge-Peng, Zhou, Yi, Chen, Geng, Fu, Huazhu, Shen, Jianbing, Shao, Ling

论文摘要

2019年冠状病毒病(Covid-19)在2020年初在全球范围内蔓延,导致世界面临生存危机。从计算机断层扫描(CT)图像对肺部感染的自动检测为增强解决Covid-19的传统医疗保健策略提供了巨大的潜力。但是,从CT切片中分割感染区域面临几个挑战,包括感染特征的高差异以及感染和正常组织之间的低强度对比度。此外,在短时间内收集大量数据是不切实际的,抑制了深层模型的训练。为了应对这些挑战,提出了一种新型的Covid-19肺部感染分割深网(INF-NET),以自动从胸部CT切片中识别受感染的区域。在我们的Inf-NET中,使用平行的部分解码器来汇总高级特征并生成全局地图。然后,使用隐式逆转注意力和明确的边缘注意力来对边界进行建模并增强表示形式。此外,为了减轻标记数据的短缺,我们基于随机选择的传播策略提出了半监督分割框架,该策略仅需要一些标记的图像和杠杆,主要是未标记的数据。我们的半监督框架可以提高学习能力并取得更高的表现。对我们的共裂和真实CT量进行的广泛实验表明,所提出的INF-NET优于大多数尖端的分割模型,并提高了最先进的性能。

Coronavirus Disease 2019 (COVID-19) spread globally in early 2020, causing the world to face an existential health crisis. Automated detection of lung infections from computed tomography (CT) images offers a great potential to augment the traditional healthcare strategy for tackling COVID-19. However, segmenting infected regions from CT slices faces several challenges, including high variation in infection characteristics, and low intensity contrast between infections and normal tissues. Further, collecting a large amount of data is impractical within a short time period, inhibiting the training of a deep model. To address these challenges, a novel COVID-19 Lung Infection Segmentation Deep Network (Inf-Net) is proposed to automatically identify infected regions from chest CT slices. In our Inf-Net, a parallel partial decoder is used to aggregate the high-level features and generate a global map. Then, the implicit reverse attention and explicit edge-attention are utilized to model the boundaries and enhance the representations. Moreover, to alleviate the shortage of labeled data, we present a semi-supervised segmentation framework based on a randomly selected propagation strategy, which only requires a few labeled images and leverages primarily unlabeled data. Our semi-supervised framework can improve the learning ability and achieve a higher performance. Extensive experiments on our COVID-SemiSeg and real CT volumes demonstrate that the proposed Inf-Net outperforms most cutting-edge segmentation models and advances the state-of-the-art performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源