论文标题
有限派生类别的维度的上限
An Upper Bound for the Dimension of Bounded Derived Categories
论文作者
论文摘要
令$λ$为Artin代数。我们为有限生成的$λ$ - 模块的类别$ \modλ$的有限衍生的类别的尺寸提供了一个上限,就某些简单右$λ$ -MODULES的投射和注入尺寸以及$λ$的激进层长度而言。此外,我们在$λ$的根部层长度方面为$ \modλ$的奇异性类别的维度提供了上限。
Let $Λ$ be an artin algebra. We give an upper bound for the dimension of the bounded derived category of the category $\mod Λ$ of finitely generated right $Λ$-modules in terms of the projective and injective dimensions of certain class of simple right $Λ$-modules as well as the radical layer length of $Λ$. In addition, we give an upper bound for the dimension of the singularity category of $\mod Λ$ in terms of the radical layer length of $Λ$.