论文标题
通过复发神经网络预测光纤中的超快非线性动力学
Predicting ultrafast nonlinear dynamics in fibre optics with a recurrent neural network
论文作者
论文摘要
光纤中超平脉冲的传播显示复杂的非线性动力学,这些动力学在诸如高功率脉冲压缩和宽带超脑生成等领域中的重要应用。然而,这种非线性演变敏感地取决于输入脉冲和纤维特性,并且出于应用目的而优化传播需要基于非线性Schrödinger型方程的概括的广泛数值模拟。这是计算要求的,并在使用数值技术实时设计和优化实验时会产生严重的瓶颈。在这里,我们使用基于机器学习的范式提出了解决此问题的解决方案,以预测具有复发神经网络的光纤中的复杂非线性传播,从而绕开了对管理传播模型的直接数值解决方案的需求。具体而言,我们仅从给定的转换限制的输入脉冲强度谱图中,表明具有长期短期记忆的复发性神经网络如何准确地预测高阶孤子压缩和超副局的时间和光谱演变。与孤子压缩情况的实验进行比较,在时间和光谱域中都表现出显着的一致性。在光学元件中,我们的结果很容易适用于脉冲压缩和宽带光源的优化,更普遍地在物理学中,它们为所有非线性Schrödinger-type系统提供了新的观点,用于研究Bose-Einstein冷凝物,血浆物理学和水力动力学的研究。
The propagation of ultrashort pulses in optical fibre displays complex nonlinear dynamics that find important applications in fields such as high power pulse compression and broadband supercontinuum generation. Such nonlinear evolution however, depends sensitively on both the input pulse and fibre characteristics, and optimizing propagation for application purposes requires extensive numerical simulations based on generalizations of a nonlinear Schrödinger-type equation. This is computationally-demanding and creates a severe bottleneck in using numerical techniques to design and optimize experiments in real-time. Here, we present a solution to this problem using a machine-learning based paradigm to predict complex nonlinear propagation in optical fibres with a recurrent neural network, bypassing the need for direct numerical solution of a governing propagation model. Specifically, we show how a recurrent neural network with long short-term memory accurately predicts the temporal and spectral evolution of higher-order soliton compression and supercontinuum generation, solely from a given transform-limited input pulse intensity profile. Comparison with experiments for the case of soliton compression shows remarkable agreement in both temporal and spectral domains. In optics, our results apply readily to the optimization of pulse compression and broadband light sources, and more generally in physics, they open up new perspectives for studies in all nonlinear Schrödinger-type systems in studies of Bose-Einstein condensates, plasma physics, and hydrodynamics.