论文标题

通过切片和投影在晶格点枚举器上的界限

Bounds on the lattice point enumerator via slices and projections

论文作者

Freyer, Ansgar, Henk, Martin

论文摘要

Gardner,Gronchi和Zong提出了一个问题,是找到M. Meyer的不等式的离散类似物,从下面界定了凸体的体积,其切片与坐标超平面的几何平均值。在这个问题上,我们为此提供了第一个通用界限,我们在更一般的环境中研究了一个问题,即以切片和预测来绑定凸形体的晶格点的数量。

Gardner, Gronchi and Zong posed the problem to find a discrete analogue of M. Meyer's inequality bounding the volume of a convex body from below by the geometric mean of the volumes of its slices with the coordinate hyperplanes. Motivated by this problem, for which we provide a first general bound, we study in a more general context the question to bound the number of lattice points of a convex body in terms of slices as well as projections.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源