论文标题
目标主成分回归
Targeted Principal Components Regression
论文作者
论文摘要
我们提出了一种基于最大化响应和预测因子的关节伪可能的回归方法。我们的方法同时使用响应和预测指标选择与回归相关的预测变量的线性组合,从而解决了常规的常规主成分回归的缺陷。所提出的估计量显示在各种设置中是一致的,包括具有非正态和依赖观测值的设置;如果固定预测变量($ p $)的数量($ n $)的数量($ n $)倾向于无限且依赖性较弱,而当$ p \至infty $ at $ n $时,则需要更强的分配假设,那么第一和第二瞬间的条件就足够了。我们将估计量的渐近分布作为在True参数处的参数集的切线锥上的多元正常随机矢量的投影,发现估计值比竞争性估计值更有效。在模拟中,我们的方法比常规的主成分回归更为准确,并且比较部分最小二乘和预测信封。该方法的实际实用性在一个数据示例中说明了股票回报的横截面预测。
We propose a principal components regression method based on maximizing a joint pseudo-likelihood for responses and predictors. Our method uses both responses and predictors to select linear combinations of the predictors relevant for the regression, thereby addressing an oft-cited deficiency of conventional principal components regression. The proposed estimator is shown to be consistent in a wide range of settings, including ones with non-normal and dependent observations; conditions on the first and second moments suffice if the number of predictors ($p$) is fixed and the number of observations ($n$) tends to infinity and dependence is weak, while stronger distributional assumptions are needed when $p \to \infty$ with $n$. We obtain the estimator's asymptotic distribution as the projection of a multivariate normal random vector onto a tangent cone of the parameter set at the true parameter, and find the estimator is asymptotically more efficient than competing ones. In simulations our method is substantially more accurate than conventional principal components regression and compares favorably to partial least squares and predictor envelopes. The method's practical usefulness is illustrated in a data example with cross-sectional prediction of stock returns.