论文标题
使用套索的GPS欺骗检测和分类相关器的技术
A GPS spoofing detection and classification correlator-based technique using the LASSO
论文作者
论文摘要
这项工作提出了一个全球导航卫星系统(GNSS),该系统为单个天线接收器欺骗检测和分类技术。我们通过使用最小绝对的收缩和选择操作员(LASSO)在基带相关域中提出优化问题。我们对接收信号的相关器TAP输出进行建模,以形成三角形函数的字典,并利用稀疏信号处理,以选择从所述词典中转移的匹配三角形的分解。这个最小化问题的最佳解决方案通过观察稀疏的向量输出中的两个不同的代码相值(真实和欺骗)来区分潜在的欺骗攻击峰的存在。我们使用阈值来减轻错误警报。此外,我们通过将词典增强到转移三角形的更高分辨率来提出最小化问题的变化。该提出的技术可以作为高级精细监控工具实现,以帮助跟踪缓解措施的跟踪循环。在我们的实验中,我们能够将正宗和欺骗器峰与合成数据模拟和实际数据集区分开,即德克萨斯州欺骗测试电池(Texbat)。所提出的方法在标称信号 - 噪声比(SNR)条件下达到了0.3%的检测误差率(DER),用于3 dB的真实范围内的烟囱功率。
This work proposes a global navigation satellite system (GNSS) spoofing detection and classification technique for single antenna receivers. We formulate an optimization problem at the baseband correlator domain by using the Least Absolute Shrinkage and Selection Operator (LASSO). We model correlator tap outputs of the received signal to form a dictionary of triangle-shaped functions and leverage sparse signal processing to choose a decomposition of shifted matching triangles from said dictionary. The optimal solution of this minimization problem discriminates the presence of a potential spoofing attack peak by observing a decomposition of two different code-phase values (authentic and spoofed) in a sparse vector output. We use a threshold to mitigate false alarms. Furthermore, we present a variation of the minimization problem by enhancing the dictionary to a higher-resolution of shifted triangles. The proposed technique can be implemented as an advanced fine-acquisition monitoring tool to aid in the tracking loops for spoofing mitigation. In our experiments, we are able to distinguish authentic and spoofer peaks from synthetic data simulations and from a real dataset, namely, the Texas Spoofing Test Battery (TEXBAT). The proposed method achieves 0.3% detection error rate (DER) for a spoofer attack in nominal signal-to-noise ratio (SNR) conditions for an authentic-over-spoofer power of 3 dB.