论文标题

在社交媒体中分析政治模仿

Analyzing Political Parody in Social Media

论文作者

Maronikolakis, Antonis, Villegas, Danae Sanchez, Preotiuc-Pietro, Daniel, Aletras, Nikolaos

论文摘要

Parody是一种用于模仿喜剧或关键目的实体的象征性装置,并通过许多流行的模仿帐户在社交媒体中代表了广泛的现象。在本文中,我们介绍了对模仿的首个计算研究。我们介绍了来自真实政客及其相应模仿帐户的新推文的新公开数据集。我们运行了一系列有监督的机器学习模型,以自动检测模仿推文,并通过对来自不同性别和各个国家 /地区的培训中看不见的帐户的推文进行测试,以强调鲁棒性。我们的结果表明,可以预测政治模仿推文的准确性高达90%。最后,我们通过语言分析确定模仿的标记。除了语言学和政治交流方面的研究之外,准确,自动检测模仿对于改善事实检查记者和分析(例如,通过过滤式戏剧性话语)等事实检查和分析很重要。

Parody is a figurative device used to imitate an entity for comedic or critical purposes and represents a widespread phenomenon in social media through many popular parody accounts. In this paper, we present the first computational study of parody. We introduce a new publicly available data set of tweets from real politicians and their corresponding parody accounts. We run a battery of supervised machine learning models for automatically detecting parody tweets with an emphasis on robustness by testing on tweets from accounts unseen in training, across different genders and across countries. Our results show that political parody tweets can be predicted with an accuracy up to 90%. Finally, we identify the markers of parody through a linguistic analysis. Beyond research in linguistics and political communication, accurately and automatically detecting parody is important to improving fact checking for journalists and analytics such as sentiment analysis through filtering out parodical utterances.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源