论文标题
一种用于计算三维金属纳米结构中第二次谐波生成的嵌套混合杂交不连续的Galerkin方法
A nested hybridizable discontinuous Galerkin method for computing second-harmonic generation in three-dimensional metallic nanostructures
论文作者
论文摘要
在本文中,我们开发了一种可嵌套的杂交不连续的Galerkin(HDG)方法,以数值求解Maxwell的方程与金属中传导波段电子的流体动力模型相结合。通过静态冷凝,消除了元素中定义的近似解的自由度,HDG方法从定义在元素边界上定义的近似迹线的自由度来产生线性系统。此外,我们建议重新排序这些自由度,以便线性系统可容纳第二个静态凝结,以消除大约近似迹线的大部分自由度,从而产生一个较小的线性系统。对于本文考虑的特定金属结构,通过嵌套静态凝结获得的产生的线性系统是一个块的三角形系统,可以有效地求解。我们将嵌套的HDG方法应用于三角同轴周期性纳米类结构上的第二次谐波生成(SHG)。这种非线性光学现象具有跨越多个长度尺度的快速场变化和极端的边界层结构。数值结果表明,识别在$ω$和2Ω$中表现出共振的结构的能力对于激发第二个谐波响应至关重要。
In this paper, we develop a nested hybridizable discontinuous Galerkin (HDG) method to numerically solve the Maxwell's equations coupled with the hydrodynamic model for the conduction-band electrons in metals. By means of a static condensation to eliminate the degrees of freedom of the approximate solution defined in the elements, the HDG method yields a linear system in terms of the degrees of freedom of the approximate trace defined on the element boundaries. Furthermore, we propose to reorder these degrees of freedom so that the linear system accommodates a second static condensation to eliminate a large portion of the degrees of freedom of the approximate trace, thereby yielding a much smaller linear system. For the particular metallic structures considered in this paper, the resulting linear system obtained by means of nested static condensations is a block tridiagonal system, which can be solved efficiently. We apply the nested HDG method to compute the second harmonic generation (SHG) on a triangular coaxial periodic nanogap structure. This nonlinear optics phenomenon features rapid field variations and extreme boundary-layer structures that span multiple length scales. Numerical results show that the ability to identify structures which exhibit resonances at $ω$ and $2ω$ is paramount to excite the second harmonic response.