论文标题

Twitter的家庭时间表上的隐私感知推荐系统挑战

Privacy-Aware Recommender Systems Challenge on Twitter's Home Timeline

论文作者

Belli, Luca, Ktena, Sofia Ira, Tejani, Alykhan, Lung-Yut-Fong, Alexandre, Portman, Frank, Zhu, Xiao, Xie, Yuanpu, Gupta, Akshay, Bronstein, Michael, Delić, Amra, Sottocornola, Gabriele, Anelli, Walter, Andrade, Nazareno, Smith, Jessie, Shi, Wenzhe

论文摘要

当今,推荐系统构成了大多数社交网络平台的核心引擎,旨在最大程度地提高用户满意度以及其他关键业务目标。 Twitter也不例外。尽管Twitter数据已被广泛用于了解社会经济和政治现象和用户行为,但用户通过在家庭时间表上的参与提供的暗示反馈仅在有限的程度上探索了Tweets。同时,缺乏大规模的公共社交网络数据集,这将使科学界能够基准和建立更强大,更全面的模型,以根据用户兴趣量身定制内容。通过发布1.6亿条推文以及参与信息的原始数据集,Twitter的目的是准确解决这一问题。在此版本中,特别注意保持遵守现有隐私法。除了用户隐私外,本文还涉及研究人员和专业人士努力预测用户参与面临的关键挑战。它进一步描述了ACM Recsys与Twitter使用此数据集合作组织的Recsys 2020挑战的关键方面。

Recommender systems constitute the core engine of most social network platforms nowadays, aiming to maximize user satisfaction along with other key business objectives. Twitter is no exception. Despite the fact that Twitter data has been extensively used to understand socioeconomic and political phenomena and user behaviour, the implicit feedback provided by users on Tweets through their engagements on the Home Timeline has only been explored to a limited extent. At the same time, there is a lack of large-scale public social network datasets that would enable the scientific community to both benchmark and build more powerful and comprehensive models that tailor content to user interests. By releasing an original dataset of 160 million Tweets along with engagement information, Twitter aims to address exactly that. During this release, special attention is drawn on maintaining compliance with existing privacy laws. Apart from user privacy, this paper touches on the key challenges faced by researchers and professionals striving to predict user engagements. It further describes the key aspects of the RecSys 2020 Challenge that was organized by ACM RecSys in partnership with Twitter using this dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源