论文标题
汉密尔顿 - 雅各比方程的大时间行为
Large time behavior for a Hamilton-Jacobi equation in a critical Coagulation-Fragmentation model
论文作者
论文摘要
我们研究了均匀的粘度解决方案对单数汉密尔顿 - 雅各比方程的较大时间行为,该方程出现在具有乘法性凝结和恒定碎片核的关键凝结 - 污染模型中。我们的结果包括固定溶液的完整特征和最佳条件,以确保大量时间收敛。特别是,我们在某些自然条件下在初始数据上获得收敛结果,并且当这种情况失败时,结果是非结合的。
We study the large time behavior of the sublinear viscosity solution to a singular Hamilton-Jacobi equation that appears in a critical Coagulation-Fragmentation model with multiplicative coagulation and constant fragmentation kernels. Our results include complete characterizations of stationary solutions and optimal conditions to guarantee large time convergence. In particular, we obtain convergence results under certain natural conditions on the initial data, and a nonconvergence result when such conditions fail.