论文标题

在产前超声体积中自动分割全胎头的混合注意力

Hybrid Attention for Automatic Segmentation of Whole Fetal Head in Prenatal Ultrasound Volumes

论文作者

Yang, Xin, Wang, Xu, Wang, Yi, Dou, Haoran, Li, Shengli, Wen, Huaxuan, Lin, Yi, Heng, Pheng-Ann, Ni, Dong

论文摘要

背景和客观:胎儿头部的生物特征测量是怀孕期间母体和胎儿健康监测的重要指标。 3D超声(US)在覆盖整个胎儿头时具有与2D扫描相比的独特优势,并可能促进诊断。但是,自动将美国体积的整个胎儿头部段仍然悬挂为新兴和未解决的问题。自动解决方案需要解决的挑战包括图像质量差,边界歧义,长跨度的遮挡以及不同胎儿姿势和胎龄之间的外观变异性。在本文中,我们提出了第一个完全自动化的解决方案,以分割美国体积的整个胎儿头部。 方法:首先将分割任务用于编码器深度体系结构下的端到端体积映射。然后,我们将分段与提出的混合注意方案(HAS)相结合,以选择判别特征并以复合和分层的方式抑制非信息的体积特征。由于很少的计算开销,事实证明可以有效解决边界歧义和缺陷。为了提高分割的空间一致性,我们以级联的方式进一步组织了多个分段,以在预测前辈的预测中重新审视上下文来完善结果。 结果:在从100位健康志愿者那里收集的大型数据集上进行了验证,我们的方法呈现出卓越的分割性能(DSC(DICE相似系数),96.05%),与专家达成了显着的协议。从52名志愿者那里收集了另外156次卷,我们针对扫描变化,高可重现(平均标准偏差为11.524 mL)。 结论:这是关于3D US的整个胎儿头部分割的首次研究。我们的方法有望成为协助基于体积的美国产前研究的可行解决方案。

Background and Objective: Biometric measurements of fetal head are important indicators for maternal and fetal health monitoring during pregnancy. 3D ultrasound (US) has unique advantages over 2D scan in covering the whole fetal head and may promote the diagnoses. However, automatically segmenting the whole fetal head in US volumes still pends as an emerging and unsolved problem. The challenges that automated solutions need to tackle include the poor image quality, boundary ambiguity, long-span occlusion, and the appearance variability across different fetal poses and gestational ages. In this paper, we propose the first fully-automated solution to segment the whole fetal head in US volumes. Methods: The segmentation task is firstly formulated as an end-to-end volumetric mapping under an encoder-decoder deep architecture. We then combine the segmentor with a proposed hybrid attention scheme (HAS) to select discriminative features and suppress the non-informative volumetric features in a composite and hierarchical way. With little computation overhead, HAS proves to be effective in addressing boundary ambiguity and deficiency. To enhance the spatial consistency in segmentation, we further organize multiple segmentors in a cascaded fashion to refine the results by revisiting context in the prediction of predecessors. Results: Validated on a large dataset collected from 100 healthy volunteers, our method presents superior segmentation performance (DSC (Dice Similarity Coefficient), 96.05%), remarkable agreements with experts. With another 156 volumes collected from 52 volunteers, we ahieve high reproducibilities (mean standard deviation 11.524 mL) against scan variations. Conclusion: This is the first investigation about whole fetal head segmentation in 3D US. Our method is promising to be a feasible solution in assisting the volumetric US-based prenatal studies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源