论文标题

通过理论引导的神经网络替代的动态地下流动的有效不确定性定量

Efficient Uncertainty Quantification for Dynamic Subsurface Flow with Surrogate by Theory-guided Neural Network

论文作者

Wang, Nanzhe, Chang, Haibin, Zhang, Dongxiao

论文摘要

地下流问题通常涉及一定程度的不确定性。因此,对于地下流量预测,通常需要进行不确定性定量。在这项工作中,我们提出了一种通过理论引导神经网络(TGNN)构建的替代物进行动态地下流量有效不确定性定量的方法。此处的TGNN专门针对随机参数的问题。在TGNN中,随机参数,时间和位置包括神经网络的输入,而感兴趣的数量是输出。神经网络经过可用的仿真数据的训练,同时在理论(例如,理论方程,边界条件,初始条件等)的同时指导。训练有素的神经网络可以通过新的随机参数来预测地下流问题的解决方案。使用TGNN替代物,可以有效地实施Monte Carlo(MC)方法以进行不确定性定量。在多孔培养基中使用二维动态饱和流问题评估所提出的方法。数值结果表明,与基于模拟的实施相比,基于TGNN的替代物可以显着提高不确定性量化任务的效率。有关相关长度较小的随机场,较大的方差,变化的边界值和分布式方差的进一步研究,并获得了令人满意的结果。

Subsurface flow problems usually involve some degree of uncertainty. Consequently, uncertainty quantification is commonly necessary for subsurface flow prediction. In this work, we propose a methodology for efficient uncertainty quantification for dynamic subsurface flow with a surrogate constructed by the Theory-guided Neural Network (TgNN). The TgNN here is specially designed for problems with stochastic parameters. In the TgNN, stochastic parameters, time and location comprise the input of the neural network, while the quantity of interest is the output. The neural network is trained with available simulation data, while being simultaneously guided by theory (e.g., the governing equation, boundary conditions, initial conditions, etc.) of the underlying problem. The trained neural network can predict solutions of subsurface flow problems with new stochastic parameters. With the TgNN surrogate, the Monte Carlo (MC) method can be efficiently implemented for uncertainty quantification. The proposed methodology is evaluated with two-dimensional dynamic saturated flow problems in porous medium. Numerical results show that the TgNN based surrogate can significantly improve the efficiency of uncertainty quantification tasks compared with simulation based implementation. Further investigations regarding stochastic fields with smaller correlation length, larger variance, changing boundary values and out-of-distribution variances are performed, and satisfactory results are obtained.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源