论文标题

劳林液体中的分数角动量和任何杂质统计

Fractional angular momentum and anyon statistics of impurities in Laughlin liquids

论文作者

Graß, Tobias, Juliá-Díaz, Bruno, Baldelli, Niccolò, Bhattacharya, Utso, Lewenstein, Maciej

论文摘要

分数量子大厅液体的基本激发是准粒子或果酱,它们既不是玻色子也不是福尔物,而是所谓的。在这里,我们研究了浸入量子大厅液体中的杂质颗粒,该量子液体通过与液体的排斥相互作用与准霍尔斯结合。我们表明,杂质的角动量由角动量的分数“量子”的倍数给出,并且可以直接从杂质密度观察到。在具有几种杂质的系统中,它们的总角动量在自由费米和游离玻色子的值之间插值。该插值的特征是Anyons的分数统计参数通常是通过其编织行为定义的。

The elementary excitations of a fractional quantum Hall liquid are quasiparticles or quasiholes which are neither bosons nor fermions, but so-called anyons. Here we study impurity particles immersed in a quantum Hall liquid which bind to the quasiholes via repulsive interactions with the liquid. We show that the angular momentum of an impurity is given by the multiple of a fractional "quantum" of angular momentum, and can directly be observed from the impurity density. In a system with several impurities bound to quasiholes, their total angular momentum interpolates between the values for free fermions and for free bosons. This interpolation is characterized by the fractional statistical parameter of the anyons which is typically defined via their braiding behavior.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源