论文标题
了解纳米级的机械性能和锗-Silicon合金的故障机制
Understanding Mechanical Properties and Failure Mechanism of Germanium-Silicon Alloy at Nanoscale
论文作者
论文摘要
我们使用分子动力学(MD)模拟研究了立方锌混合(ZB)SI0.5GE0.5合金纳米线(NW)的机械性能。使用Tersoff电位来阐明纳米线大小,晶体取向以及温度对材料特性的影响。我们发现,横截面区域的降低会导致最终的拉伸强度和该合金的幼体模量,这可以归因于表面与体积比的增加。与其他晶体取向相比,[111]面向SI0.5GE0.5 NW具有最高的断裂强度,但[110]取向具有最高的断裂韧性。温度的作用描述了与最终拉伸强度和幼体模量的反比关系。温度升高可促进材料的故障,从而降低材料强度。我们的研究表明,通过去除Si或GE原子引入的空缺缺陷表现出相似的行为,并且随着空缺浓度的增加,最终的拉伸强度和幼体模量都可以线性降低。我们进一步说明了在两个极低和高温下Si0.5GE0.5 NW的故障特性。 Si0.5GE0.5合金的内在故障特性对温度不敏感。有趣的是,在两个温度下,随着应变的增加,SI0.5GE0.5的横截面最终类似于颈部,如在延性材料中通常观察到的,尽管NW失败本质上是脆弱的。总体而言,这项工作为理解ZB SI0.5GE0.5 NW的材料属性和故障特性提供了新的观点,该特性将成为设计基于SI-GE的Nanodevices的指南。
We used molecular dynamics (MD) simulations to investigate the mechanical properties of cubic zinc blende (ZB) Si0.5Ge0.5 alloy nanowire (NW). Tersoff potential is employed to elucidate the effect of nanowire size, crystal orientations, and temperature on the material properties. We found that the reduction in the cross-sectional area results in lower ultimate tensile strength and Youngs modulus of this alloy which can be attributed to the increased surface to volume ratio. The [111] oriented Si0.5Ge0.5 NW exhibits the highest fracture strength compared to other crystal orientations but [110] orientation possesses the highest fracture toughness. The effect of temperature depicts an inverse relationship with the ultimate tensile strength and Youngs modulus. The increased temperature facilitates the failure of the material, thus degrades the materials strength. Our study reveals that the vacancy defects introduced via removal of either Si or Ge atoms exhibit similar behavior, and with the increase in vacancy concentration, both ultimate tensile strength and Youngs modulus reduces linearly. We further illustrate the failure characteristics of Si0.5Ge0.5 NW at two extremely low and high temperatures. The intrinsic failure characteristics of Si0.5Ge0.5 alloy is found to be insensitive to the temperature. Interestingly, at both temperatures, with the increasing strain, the cross-section of Si0.5Ge0.5 eventually resembles a neck as typically observed in ductile materials, although the NW failure is brittle in nature. Overall, this work offers a new perspective on understanding material properties and failure characteristics of ZB Si0.5Ge0.5 NW that will be a guide for designing Si-Ge based nanodevices.