论文标题

可视化和解释无监督的太阳风分类

Visualizing and Interpreting Unsupervised Solar Wind Classifications

论文作者

Amaya, Jorge, Dupuis, Romain, Innocenti, Maria Elena, Lapenta, Giovanni

论文摘要

机器学习的目标之一是消除乏味而艰苦的重复工作。从多个任务中的数百万太阳风数据进行的手动和半自动分类可以用自动算法取代,这些算法可以在多维数据的山上发现太阳能风能的实际差异。在本文中,我们介绍了如何使用无监督的聚类技术来隔离不同类型的太阳风。我们建议使用先进的数据减少方法来预处理数据,并介绍了自我组织地图可视化和解释14年ACE数据的使用。最后,我们展示了如何使用这些技术来发现隐藏的信息,以及它们与以前的手册和自动分类相比。

One of the goals of machine learning is to eliminate tedious and arduous repetitive work. The manual and semi-automatic classification of millions of hours of solar wind data from multiple missions can be replaced by automatic algorithms that can discover, in mountains of multi-dimensional data, the real differences in the solar wind properties. In this paper we present how unsupervised clustering techniques can be used to segregate different types of solar wind. We propose the use of advanced data reduction methods to pre-process the data, and we introduce the use of Self-Organizing Maps to visualize and interpret 14 years of ACE data. Finally, we show how these techniques can potentially be used to uncover hidden information, and how they compare with previous manual and automatic categorizations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源