论文标题

用于大脑网络分类的机器学习方法:使用皮质形态网络应用自闭症诊断

Machine Learning Methods for Brain Network Classification: Application to Autism Diagnosis using Cortical Morphological Networks

论文作者

Bilgen, Ismail, Guvercin, Goktug, Rekik, Islem

论文摘要

自闭症谱系障碍(ASD)会影响不同级别的大脑连通性。但是,由于ASD异质性,使用磁共振成像(MRI)(MRI)对机器学习诊断框架仍然非常具有挑战性。到目前为止,现有的网络神经科学作品主要集中在功能(源自功能MRI)和结构(源自扩散MRI)脑连接性上,这可能无法捕获大脑区域之间的关系形态变化。实际上,使用传统T1加权MRI的形态学脑网络进行ASD诊断的机器学习(ML)研究非常稀缺。为了填补这一空白,我们通过组织Kaggle竞争来利用众包来建立用于使用来自T1加权MRI的皮质形态学网络应用于ASD诊断的神经系统障碍诊断的机器学习管道。在比赛期间,为参与者提供了一个培训数据集,并且只允许检查他们在公共测试数据上的表现。最终评估是根据准确性,灵敏度和特异性指标对公共和隐藏测试数据集进行的。使用每个绩效指标对团队进行排名,并根据所有排名的平均值确定最终排名。排名第一的团队的精度为70%,灵敏度为72.5%,特异性为67.5%,而第二名的团队分别达到63.8%,62.5%,65%。利用参与者在竞争性机器学习设置中设计ML诊断方法已使使用皮质形态网络的ASD诊断的广泛频谱探索和基准测试。

Autism spectrum disorder (ASD) affects the brain connectivity at different levels. Nonetheless, non-invasively distinguishing such effects using magnetic resonance imaging (MRI) remains very challenging to machine learning diagnostic frameworks due to ASD heterogeneity. So far, existing network neuroscience works mainly focused on functional (derived from functional MRI) and structural (derived from diffusion MRI) brain connectivity, which might not capture relational morphological changes between brain regions. Indeed, machine learning (ML) studies for ASD diagnosis using morphological brain networks derived from conventional T1-weighted MRI are very scarce. To fill this gap, we leverage crowdsourcing by organizing a Kaggle competition to build a pool of machine learning pipelines for neurological disorder diagnosis with application to ASD diagnosis using cortical morphological networks derived from T1-weighted MRI. During the competition, participants were provided with a training dataset and only allowed to check their performance on a public test data. The final evaluation was performed on both public and hidden test datasets based on accuracy, sensitivity, and specificity metrics. Teams were ranked using each performance metric separately and the final ranking was determined based on the mean of all rankings. The first-ranked team achieved 70% accuracy, 72.5% sensitivity, and 67.5% specificity, while the second-ranked team achieved 63.8%, 62.5%, 65% respectively. Leveraging participants to design ML diagnostic methods within a competitive machine learning setting has allowed the exploration and benchmarking of wide spectrum of ML methods for ASD diagnosis using cortical morphological networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源