论文标题

使用具有重点效果的宏观动作的有效的黑盒计划

Efficient Black-Box Planning Using Macro-Actions with Focused Effects

论文作者

Allen, Cameron, Katz, Michael, Klinger, Tim, Konidaris, George, Riemer, Matthew, Tesauro, Gerald

论文摘要

确定性计划的困难随着搜索树的深度而成倍增加。 Black-Box计划提出了更大的挑战,因为计划人员必须在没有明确模型的域名模型的情况下进行操作。启发式方法可以使搜索效率更高,但是黑盒计划的目标感知启发式方法通常依赖于目标计数,这通常是非常不知情的。在这项工作中,我们通过发现使目标计数更准确的宏观动作来克服这一局限性。我们的方法搜索具有重点效果的宏观运动(即仅修改少量状态变量的宏),这与目标计数启发式启发式的假设非常吻合。集中的宏大大提高了广泛的计划域的黑盒计划效率,有时甚至击败了最先进的计划者,可以访问完整的域模型。

The difficulty of deterministic planning increases exponentially with search-tree depth. Black-box planning presents an even greater challenge, since planners must operate without an explicit model of the domain. Heuristics can make search more efficient, but goal-aware heuristics for black-box planning usually rely on goal counting, which is often quite uninformative. In this work, we show how to overcome this limitation by discovering macro-actions that make the goal-count heuristic more accurate. Our approach searches for macro-actions with focused effects (i.e. macros that modify only a small number of state variables), which align well with the assumptions made by the goal-count heuristic. Focused macros dramatically improve black-box planning efficiency across a wide range of planning domains, sometimes beating even state-of-the-art planners with access to a full domain model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源