论文标题

Spin-Ruijsenaars,Q呈现的Haldane-Shastry和MacDonald多项式

Spin-Ruijsenaars, q-deformed Haldane-Shastry and Macdonald polynomials

论文作者

Lamers, Jules, Pasquier, Vincent, Serban, Didina

论文摘要

我们研究了Haldane-Shastry模型的$ Q $ - 动态,这是一种部分各向同性(类似XXZ)的长距离自旋链,该链具有有限尺寸的量子词(实际上:量子环)对称性。 我们通过“冷冻”从Affine Hecke代数中的“冻结”来得出了由我们中的一个建立在Uglov的作品建立的哈密顿人的成对形式。我们获得了麦克唐纳运营商的自旋分析的明确表达式。通过冻结这些产生自旋链的较高的哈密顿量,包括相反的手性的哈密顿量。两种手性汉密尔顿人的总和也具有真正的统一根源。 我们阐明了标记特征空间(称为“主题”)的模式与晶体极限$ q \ to \ infty $中的相应变性之间的关系。对于每个图案,我们获得了确切特征向量的明确表达式,对通用$ Q $有效,该表达式具有('pseudo'或'l-')最高权重,从某种意义上说,就单型矩阵的操作员而言,它是$ a $ a $和$ d $的特征向量,并由$ c $ nihired。它具有一个简单的组件,其中包含$ q $ - vandermonde乘以麦克唐纳多项式的“对称平方” - 或更确切地说是其量子球形区域特殊情况。它的其他组件是通过Hecke代数的作用获得的,其次是将变量与统一根的“评估”。我们证明我们的矢量在评估后的权重最高。我们对频谱的描述已经完成。 该模型,包括量子环动作,可以根据多项式进行重新构建。我们的主要工具是Aggine Hecke代数的$ y $ - 运营商。我们对角线化的关键步骤是,在合适的多项式的子空间上,第一个$ m $'classical'(即没有差异零件)$ y $ $ $ y $ oserators $ n $变量在上述评估后,对$ y $ $ $ $ m $变量的评估,在$ y $ $ $变量中,具有量子Zonal zonal spherical spherical spherical spherical spherical spherical point。

We study the $q$-analogue of the Haldane-Shastry model, a partially isotropic (XXZ-like) long-range spin chain that enjoys quantum-affine (really: quantum-loop) symmetries at finite size. We derive the pairwise form of the Hamiltonian, found by one of us building on work of Uglov, via 'freezing' from the affine Hecke algebra. We obtain explicit expressions for the spin-analogue of Macdonald operators. Through freezing these yield the higher Hamiltonians of the spin chain, including a Hamiltonian of the opposite chirality. The sum of the two chiral Hamiltonians has a real spectrum also for $q$ a root of unity. We clarify the relation between patterns labelling the eigenspaces, known as 'motifs', and the corresponding degeneracies in the crystal limit $q\to\infty$. For each motif we obtain an explicit expression for the exact eigenvector, valid for generic $q$, that has ('pseudo' or 'l-') highest weight in the sense that, in terms of the operators from the monodromy matrix, it is an eigenvector of $A$ and $D$ and annihilated by $C$. It has a simple component featuring the 'symmetric square' of the $q$-Vandermonde times a Macdonald polynomial - or more precisely its quantum spherical zonal special case. Its other components are obtained through the action of the Hecke algebra, followed by 'evaluation' of the variables to roots of unity. We prove that our vectors have highest weight upon evaluation. Our description of the spectrum is complete. The model, including the quantum-loop action, can be reformulated in terms of polynomials. Our main tools are the $Y$-operators of the affine Hecke algebra. The key step in our diagonalisation is that on a subspace of suitable polynomials the first $M$ 'classical' (i.e. no difference part) $Y$-operators in $N$ variables reduce, upon evaluation as above, to $Y$-operators in $M$ variables with parameters at the quantum zonal spherical point.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源