论文标题

基于多任务的食物识别和部分尺寸估计的饮食评估

Multi-Task Image-Based Dietary Assessment for Food Recognition and Portion Size Estimation

论文作者

He, Jiangpeng, Shao, Zeman, Wright, Janine, Kerr, Deborah, Boushey, Carol, Zhu, Fengqing

论文摘要

基于深度学习的方法在许多基于图像的饮食评估(例如食物分类和食物部分尺寸估计)的应用中取得了令人印象深刻的结果。但是,现有方法一次仅专注于一个任务,因此当需要一起处理多个任务时,很难在现实生活中应用。在这项工作中,我们提出了一个端到端的多任务框架,该框架可以同时实现食物分类和食物部分尺寸的估计。我们介绍了一项从营养研究中收集的食物图像数据集,其中注册营养师提供了地面食品部分。多任务学习使用基于L2-Norm的软参数共享来同时训练分类和回归任务。我们还建议使用跨域特征适应以及标准化,以进一步提高食物部分尺寸估计的性能。我们的结果表现优于分类精度的基线方法和部分估计的绝对误差,这显示了推进基于图像的饮食评估领域的巨大潜力。

Deep learning based methods have achieved impressive results in many applications for image-based diet assessment such as food classification and food portion size estimation. However, existing methods only focus on one task at a time, making it difficult to apply in real life when multiple tasks need to be processed together. In this work, we propose an end-to-end multi-task framework that can achieve both food classification and food portion size estimation. We introduce a food image dataset collected from a nutrition study where the groundtruth food portion is provided by registered dietitians. The multi-task learning uses L2-norm based soft parameter sharing to train the classification and regression tasks simultaneously. We also propose the use of cross-domain feature adaptation together with normalization to further improve the performance of food portion size estimation. Our results outperforms the baseline methods for both classification accuracy and mean absolute error for portion estimation, which shows great potential for advancing the field of image-based dietary assessment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源