论文标题
矩阵schrödinger算子在离散线上的散射矩阵的分析性能
Analyticity properties of the scattering matrix for matrix Schrödinger operators on the discrete line
论文作者
论文摘要
散射矩阵的分析扩展的显式公式以及具有有限支持潜力的准二维离散schrödinger运算符的时间延迟。这包括对频带边缘奇点的仔细分析,并允许证明列文森型定理。主代数工具是平面波传递矩阵。
Explicit formulas for the analytic extensions of the scattering matrix and the time delay of a quasi-one-dimensional discrete Schrödinger operator with a potential of finite support are derived. This includes a careful analysis of the band edge singularities and allows to prove a Levinson-type theorem. The main algebraic tool are the plane wave transfer matrices.