论文标题
紧凑的移动部署零售货架细分
Compact retail shelf segmentation for mobile deployment
论文作者
论文摘要
零售行业最近的自动化激增已迅速增加了在移动设备上应用深度学习模型的需求。为了使深度学习模型实时设备,不可避免的是紧凑的有效网络。在本文中,我们研究了零售行业的一个常见问题 - 货架分段。架子分割可以解释为像素分类问题,即每个像素是否属于可见的架子边缘。目的不仅是要分割架子边缘,还要在移动设备上部署该模型。由于没有在移动设备上使用此类密集分类问题的标准解决方案,因此我们查看可以在边缘部署的语义分割体系结构。我们修改了低英寸的语义分割体系结构以执行架子分割。在解决此问题时,我们在某些方面修改了著名的U-NET体系结构,以使其适合在设备上,而不会影响准确性的显着下降,并且参数减少了15倍。在本文中,我们提出了轻重分割网络(LWSNET),这是一个小型紧凑型模型,能够在内存有限的设备上快速运行,并且可以使用标记数据的量较少(〜100张图像)训练。
The recent surge of automation in the retail industries has rapidly increased demand for applying deep learning models on mobile devices. To make the deep learning models real-time on-device, a compact efficient network becomes inevitable. In this paper, we work on one such common problem in the retail industries - Shelf segmentation. Shelf segmentation can be interpreted as a pixel-wise classification problem, i.e., each pixel is classified as to whether they belong to visible shelf edges or not. The aim is not just to segment shelf edges, but also to deploy the model on mobile devices. As there is no standard solution for such dense classification problem on mobile devices, we look at semantic segmentation architectures which can be deployed on edge. We modify low-footprint semantic segmentation architectures to perform shelf segmentation. In addressing this issue, we modified the famous U-net architecture in certain aspects to make it fit for on-devices without impacting significant drop in accuracy and also with 15X fewer parameters. In this paper, we proposed Light Weight Segmentation Network (LWSNet), a small compact model able to run fast on devices with limited memory and can train with less amount (~ 100 images) of labeled data.