论文标题
中央限制定理用于计算粗曲率的测量
Central limit theorems for counting measures in coarse negative curvature
论文作者
论文摘要
我们建立了G组对双曲线空间X的作用相对于G上的计数量的中心限制定理。我们的技术使我们能够消除空间的正常和平滑性或行动的同时性的通常假设。我们提供了几种需要我们的一般框架的应用程序,包括在几何有限的歧管中的大地测量长度以及与亚曼福尔德的相交数字。
We establish central limit theorems for an action of a group G on a hyperbolic space X with respect to the counting measure on a Cayley graph of G. Our techniques allow us to remove the usual assumptions of properness and smoothness of the space, or cocompactness of the action. We provide several applications which require our general framework, including to lengths of geodesics in geometrically finite manifolds and to intersection numbers with submanifolds.