论文标题
旋转轨道耦合超导率:正方形晶格上的Rashba-Hubbard模型
Spin-orbit coupled superconductivity: Rashba-Hubbard model on the square lattice
论文作者
论文摘要
弱耦合重归其化组方法是一种渐近确切的方法,可以找到相关电子晶格模型的超导不稳定性。在这里,我们将其扩展到自旋轨道耦合的晶格系统,并研究Rashba-Hubbard模型的新兴超导阶段。由于RashBA型自旋轨道耦合破坏了反转对称性,因此出现的超导阶段可能是旋转单链和自旋三个状态的混合物。我们将二维方形晶格作为范式研究,并讨论出现的自旋轨道耦合超导状态的对称性,包括螺旋旋转三曲线超导性。我们还讨论了如何在一种将配对电子限制为费米表面上的动量的方法中最好地处理分裂能带。
The weak-coupling renormalization group method is an asymptotically exact method to find superconducting instabilities of a lattice model of correlated electrons. Here we extend it to spin-orbit coupled lattice systems and study the emerging superconducting phases of the Rashba-Hubbard model. Since Rashba type spin-orbit coupling breaks inversion symmetry, the arising superconducting phases may be a mixture of spin-singlet and spin-triplet states. We study the two-dimensional square lattice as a paradigm and discuss the symmetry properties of the arising spin-orbit coupled superconducting states including helical spin-triplet superconductivity. We also discuss how to best deal with split energy bands within a method which restricts paired electrons to momenta on the Fermi surface.