论文标题

域适应性的最大密度差异

Maximum Density Divergence for Domain Adaptation

论文作者

Jingjing, Li, Erpeng, Chen, Zhengming, Ding, Lei, Zhu, Ke, Lu, Tao, Shen Heng

论文摘要

无监督的域适应性解决了将知识从标记的源域转移到未标记的目标域的问题,其中两个域具有独特的数据分布。因此,域适应性的本质是减轻两个域之间的分布差异。最先进的方法是通过进行对抗训练或最大程度地减少定义分配差距的度量来实践这一想法。在本文中,我们提出了一种名为“对抗性紧密匹配(ATM)”的新域适应方法,该方法既享有对抗训练和公制学习的好处。具体而言,首先,我们提出了一种新的距离损失,称为最大密度差异(MDD),以量化分布差异。 MDD最大程度地减少了域间的差异(在ATM中的“匹配”),并最大化类内密度(ATM中的“紧”)。然后,为了解决对抗域适应中的均衡挑战问题,我们考虑利用拟议的MDD进入对抗域适应框架。最后,我们将提议的MDD定制为实际学习损失,并报告我们的ATM。据报道,经验评估和理论分析都验证了所提出的方法的有效性。在经典和大规模的四个基准上的实验结果表明,我们的方法能够在大多数评估中实现新的最新性能。本文使用的代码和数据集可在{\ it github.com/lijin118/atm}上获得。

Unsupervised domain adaptation addresses the problem of transferring knowledge from a well-labeled source domain to an unlabeled target domain where the two domains have distinctive data distributions. Thus, the essence of domain adaptation is to mitigate the distribution divergence between the two domains. The state-of-the-art methods practice this very idea by either conducting adversarial training or minimizing a metric which defines the distribution gaps. In this paper, we propose a new domain adaptation method named Adversarial Tight Match (ATM) which enjoys the benefits of both adversarial training and metric learning. Specifically, at first, we propose a novel distance loss, named Maximum Density Divergence (MDD), to quantify the distribution divergence. MDD minimizes the inter-domain divergence ("match" in ATM) and maximizes the intra-class density ("tight" in ATM). Then, to address the equilibrium challenge issue in adversarial domain adaptation, we consider leveraging the proposed MDD into adversarial domain adaptation framework. At last, we tailor the proposed MDD as a practical learning loss and report our ATM. Both empirical evaluation and theoretical analysis are reported to verify the effectiveness of the proposed method. The experimental results on four benchmarks, both classical and large-scale, show that our method is able to achieve new state-of-the-art performance on most evaluations. Codes and datasets used in this paper are available at {\it github.com/lijin118/ATM}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源